Examples from the Calculus of Variations Ii. a Degenerate Problem
نویسنده
چکیده
Continuing the previous Part I, the degenerate first order variational integrals depending on two functions of one independent variable are investigated.
منابع مشابه
Numerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملAn analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملExamples from the Calculus of Variations Iii. Legendre and Jacobi Conditions
We will deal with a new geometrical interpretation of the classical Legendre and Jacobi conditions: they are represented by the rate and the magnitude of rotation of certain linear subspaces of the tangent space around the tangents to the extremals. (The linear subspaces can be replaced by conical subsets of the tangent space.) This interpretation can be carried over to nondegenerate Lagrange p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002